
Imitating human playing styles in Super Mario Bros

Juan Ortega, Noor Shaker, Julian Togelius and Georgios N. Yannakakis

IT University of Copenhagen
Rued Langgaards Vej 7

2300 Copenhagen, Denmark
{juor, nosh, juto, yannakakis}@itu.dk

Abstract

We describe and compare several methods for generating game character
controllers that mimic the playing style of a particular human player, or of a
population of human players, across video game levels. Similarity in playing
style is measured through an evaluation framework, that compares the play
trace of one or several human players with the punctuated play trace of an
AI player. The methods that are compared are either hand-coded, direct
(based on supervised learning) or indirect (based on maximising a similarity
measure). We find that a method based on neuroevolution performs best
both in terms of the instrumental similarity measure and in phenomenological
evaluation by human spectators. A version of the classic platform game
“Super Mario Bros” is used as the testbed game in this study but the methods
are applicable to other games that are based on character movement in space.

Keywords: Game AI, Neuroevolution, Dynamic scripting, Imitation
learning, Behaviour cloning, Behaviour imitation

1. Introduction

There are several reasons one might want to develop AI that can play a
particular game in a human-like manner, or even in the manner of a particular
human. To begin with, there is a commonly held assumption that having
believable non-player characters (NPCs) in a game, for example as opponents
or team mates, makes the game more fun and/or engaging. An NPC can be
said to be believable when it would be plausible, given the in-game behaviour
of the character, that it was controlled by a human. While there is no
conclusive empirical evidence that believable NPCs improve games, this topic

Preprint submitted to Entertainment Computing October 5, 2012



has attracted some attention from the research community in recent years and
there have even been a few competitions about believable agents organised [1,
2].

Another reason for having AI that can play in a human-like manner is
that it can help demonstrate how to play the game — either in general or a
particular level. For example, Nintendo’s recent New Super Mario Bros Wii
has a feature called Super Guide that can show a player which gets stuck on
a level how to play the rest of that level. Being able to demonstrate how
to solve the level in the style of that particular player might mean that the
advice is more useful or more easily accepted.

A third reason is that it might be useful to understand how a particular
player would have played some game content, for example a level, without
having the player taking the time to play through that game content. In
particular, this is very useful in search-based procedural content generation,
where a simulation-based evaluation function uses an AI to play through the
candidate game content, assigning a numerical fitness value (partly) depend-
ing on how playable the content is. For example, when evolving a platform
game level, the fitness of the level might depend on whether an AI can play
through the level or not and how fast. As the evolutionary process might
need to evaluate tens of thousands of candidate levels when evolving a single
level, it is typically not feasible to use human play testers for this. Using
an AI that can play the content in a human-like manner can substantially
improve the content evaluation, as compared to using an AI that plays the
game in a non-humanlike manner. This argument holds even when not gen-
erating new content, but merely selecting among already generated content
for content that suits a particular player.

It is worth pointing out that not all AI plays games in a human-like
manner; quite the opposite. Both controllers that are hand-coded to play
a particular game, and controllers that are trained to play a game using
some sort of machine learning mechanism, frequently display behaviour that
strikes observers as “unnatural” or “mechanical”. When Garry Kasparov
lost to the IBM software/hardware Deep Blue, he famously complained that
the computer played in an implausibly human-like manner, given that all
other chess computers played in a distinctly machine-like fashion [3]. A
similar tendency is true for the game that is used as a testbed in this article,
Infinite Mario Bros: the AI that won the first annual Mario AI Competition
played some levels in the game extremely well, but it’s playing style looked
so unnatural that a video of the winning controller playing a level became

2



an Internet phenomenon [4]. Even when researchers set out specifically to
create human-like controllers rather than well-playing ones, success is far
from guaranteed. In the 2k BotPrize, which has been organised annually since
2008, competitors submit controllers for the first-person shooter game Unreal
Tournament 2004 with the goal of fooling human judges (who also play the
game) that the bots are controlled by humans. So far, the humans have had
higher humanness ratings than the bots by a comfortable margin [1, 5].

It is also worth pointing out that human-like behaviour is not the same as
artificial general intelligence. The original Turing test has been interpreted
as many as a test of “real AI”, even though Turing’s own view on this was
remarkably complex [6]. One common idea of “general intelligence” is a
capacity for performing well over a distribution of different problems, or in a
distribution of different environments [7]. It has been suggested that games,
especially games which can be expressed in a generative language, could serve
as good testbeds for artificial general intelligence [8]. However, there is no
guarantee that an agent that performs well over a range of games does this in
a human-like fashion at all. Creating an agent that performs in a human-like
fashion in a particular game might or might not be a step towards creating
an agent that performs well over a range of games.

In sum, we believe that creating human-like game character controllers is
an important unsolved problem in game AI research. We also believe that a
useful way of attacking this problem is to develop methods to imitate humans
from gameplay traces.

1.1. Imitating human playing behaviour

A number of attempts to create controllers that imitate human playing
behaviour, with varying degrees and types of success, can be found in both the
academic literature and among published games. These attempts can broadly
be divided into direct and indirect behaviour imitation [9]. In direct imitation,
which seems to be the most common approach, some form of supervised
learning is used to train a controller to output the same actions as the human
took when faced with the same situation. Traces of human gameplay are used
as training sets, with input features being based on descriptions of the state
the game was in (typically the environment of the player character) and the
target being the action issued by the player. Indirect imitation, on the other
hand, uses some form of optimisation of reinforcement learning algorithm to
optimise a fitness/reward function that measures the human-likeness of an
agent’s gameplay.

3



In racing games, whose constrained action and state spaces make them
useful testbeds for research into behaviour imitation, a number of attempts
have been made to train car racing controllers that drive like humans us-
ing direct imitation. Togelius et al. trained neural network controllers to
replicate human driving styles through associating simulated sensor readings
with steering and thrust controls in a simple 2D car racing game [9]. A sim-
ilar approach was taken by Chaperot and Fyfe in a 3D motocross game [10];
both studies used variants of the backpropagation algorithm for training. A
few years earlier, the commercial racing game Colin McRae Rally 2.0 used
backpropagation for learning part of the driving behaviour of NPC cars from
human examples [11, 12]. In that game, learning was used as a way of as-
sisting the construction of well-playing AI rather than to learn the driving
behaviour. Microsoft’s Forza Motorsport, on the other hand, uses a form
of direct imitation to learn the driving style of particular human players so
that it can estimate the performance of those players on particular tracks,
and also let a player’s “drivatar” compete against other players online even
in the absence of the original player. Instead of a standard machine learning
method, an ad hoc approach was used where racing lines were recorded on
prototypical track segments. This proved effective, but limited the shape of
tracks that could be used [13].

One problem with direct imitation methods is generalisation to unseen
situations. When a controller is trained with supervised learning, it is not
rewarded for playing well, only for taking the same actions as the human in
all recorded situations. When the trained controller is faced with a situation
which does not closely resemble the training data, it is likely to take an action
which is very unlike what the player would have taken in the same situation;
if the player had played the game at least moderately well, the agent’s action
is likely to be considerably worse (in terms of e.g. score) than the action
the player would have taken. (For example, if a car racing controller has
been trained on data from a well-driving human the training data might
not include situations where the human drives off the track. When faces
with an unknown track segment, it might still drive off the track, but will
not know how to get back on the track as this situation is not part of the
training data.) Consequently, direct imitation can easily lead to controllers
that perform worse than the behaviour they were trained on.

Indirect imitation was proposed as an attempt to overcome the general-
isation problem. Examples within racing games include Togelius et al. who
evolve neural networks to drive similarly to human drivers according to ex-

4



tracted features of driving style [9], and van Hoorn et al. [14] who use multi-
objective evolution to create driving behaviour which is both human-like and
well-performing.

Outside of racing games, attempts at imitating human player behaviour
are more scarce. One example is Thurau et al. [15, 16] who train controllers
to play a first-person shooter game using Bayesian methods (a form of direct
imitation). The gameplay in the commercial game Black and White relies
on a form of mixed imitation learning and reinforcement learning, where
the player teaches a companion creature to act in the game world using
demonstrations, rewards and punishment; however, technical details about
the algorithms used here are hard to come by.

As far as we know, there has not been any research published on imitation
learning in platform games or closely related genres. Neither has there been
any study published comparing different behaviour imitation techniques in
any genre. This motivates the work presented in this paper in which we will
address these two points in detail.

1.2. This paper

In this paper, we compare three different methods for imitating human
playing behaviour, and also compare the controllers they produce with three
other controllers of varying quality that are not developed specifically with
the objective of playing in a human-like manner. The main questions we
address are (1) can we create controllers that appear to be as human-like as
actual humans to external observers? (2) are controllers trained to imitate
humans perceived as more human-like than controllers simply trained to play
the game well? and (3) when imitating human behaviour, which controller
architecture and training method (direct or indirect) gives the best results?

Section 2 describes the Mario AI benchmark, a version of Super Mario
Bros that we use as the testbed game; section 3 describes the different con-
trollers that are tested. In section 3.1 we describe the method for automati-
cally evaluating the human-likeness of these controllers, which is also used as
an evaluation/fitness function for indirect imitation. Section 4 describes how
we gathered data from human players, and section 5 describes the training
of the controllers and results of automatic testing. Section 6 reports the re-
sults of using human spectators the judge human-likeness of our controllers.
We conclude by discussing what this research tells us about prospects for
imitating human behaviour in platform games and other games.

5



2. The testbed game

The testbed game used for the study presented in this paper is a modified
version of Markus Persson’s Infinite Mario Bros which is a public domain
clone of Nintendo’s classic 2D platform game Super Mario Bros. The original
Infinite Mario Bros and its source code is available on the web1. The game
has the advantage of being well known among the general public,

This game was made into a benchmark (“The Mario AI Benchmark”)
for the Mario AI Championship 2, a series of competitions that have been
running in association with several international academic conferences on
games and AI since 2009. The Mario AI Championship has four tracks: the
Gameplay track, where competitors submit controllers that are judged on
their capability to play the game as well as possible [4, 17]; the Learning
track, where submitted controllers are allowed to play each level 10000 times
before being evaluated, in order to test the capability of the controllers to
learn to play particular levels [17]; the Level Generation track, where com-
petitors submit level generators that are judged on their capacity to generate
engaging levels for human players [18]; and the Turing Test track, a recent
addition where submitted controllers compete for being the most human-like,
as judged by human spectators [2].

Different versions of the Mario AI Benchmark have been in a number
of research projects including but not limited to: player experience mod-
elling [19, 18], procedural content generation [20, 21, 22] and game adapta-
tion [18].

The gameplay in Infinite Mario Bros takes place on two-dimensional levels
in which the player avatar (Mario) has to move from left to right avoiding
obstacles and interacting with game objects. Mario can move left, right or
duck using left, right, and down arrow keys. An additional two keys can be
used to allow Mario to run, jump, or fire (depending on the state he is in).
Mario can be in one of three states: Small, Big, and Fire.

The levels’ difficulty increases as the player advances in the game by
presenting complicated matters such as gaps and moving enemies. Gaps
can be of different width, and wide gaps requires a combination of different
keys to be pressed together for a number of game cycles in order to reach
the other side of the hole. Enemies can be of different types necessitating

1http://www.mojang.com/notch/mario
2http://www.marioai.org/

6



Figure 1: Snapshot from Infinite Mario Bros, showing Mario standing on horizontally
placed blocks surrounded by different types of enemies.

different types of behaviour and affecting the level of difficulty. Mario can
avoid enemies by shooting fireballs or turtle shells, stomping or jumping over
them.

If Mario falls down a gap, he loses a life. If he touches an enemy, he gets
hurt; this means losing a life if he is currently in the Small state. Otherwise,
his state degrades from Fire to Big or from Big to Small.

Mario can interact with a certain number of items scattered around the
level such as coins placed out in the open or hidden inside blocks. Two
different types of blocks presented and Mario’s ability to interact with each
type depends on his state. Blocks hide coins, mushrooms which make Mario
grow Big, or flowers which make Mario turn into the Fire state if he is already
Big. These items appear only when Mario jumps at these blocks from below
so that he smashes his head into them.

The main goal of each level is to reach the end of the level as fast as
possible. Auxiliary goals include collecting as many as possible of the coins
that are scattered around the level and killing as many as possible of the
enemies.

7



The original Super Mario Bros game does not introduce any new game
mechanics after the first level, and only a few new level elements (enemies
and other obstacles). The player’s interest is kept through rearranging the
same well known elements throughout several levels.

For this paper, 40 different levels were generated using the standard level
generator supplied with the Mario AI Benchmark. The same levels are used
for gathering data from human participants, for evaluating the performance
of controllers and for creating the videos which were used in phenomenological
evaluation. These levels vary somewhat in difficulty, and are comparable in
difficulty and general layout to those levels that were used in the 2009 edition
of the Mario AI Competition.

2.1. Environment representation

In order to create a human-like controller using the Mario Bros testbed
previously explained, a representation of the level environment was estab-
lished. This representation was used as to model players behaviour in the
game and to apply that representation to the artificial neural network (su-
pervised learning and neuroevolution) implemented. The Mario Bros testbed
provides various information about the current level that is being played so
it can be accessed and recorded. This information is divided into level scene
information and enemies information. The level scene information matrix
contains all the different elements that appear in the screen (the screen is
divided into cells which are mapped in the level scene matrix) in a concrete
moment during the game, representing the different elements with numbers.
The enemy information matrix works in the same way, representing the dif-
ferent enemies as numbers. The representation used consisted on two grids,
one with the information of the enemies and one with the information of the
level. The size of the two grids is 4x7, as it can be seen in figure 2, where
both grids are marked.

Apart from the two grids previously described and in order to be more
precise with the knowledge representation, additional information was added
to it:

• Gap in front of Mario: Calculates the distance to the gap and returns
0 if it is further than three cells in front of Mario, 0.33 in case it is 3
cells in front of Mario, 0.66 in case of 2 cells and 1.0 in case the gap is
just one cell in front of Mario.

8



Figure 2: Mario grid representation. Both enemies and level grids contain the information
from the same area around Mario which appears marked.

• Mario is able to shoot: Returns 1 if Mario is in fire mode and able to
shoot or 0 otherwise.

• Mario is able to jump: Returns 1 if Mario is able to jump or 0 otherwise.

• Mario is on the ground: Returns 1 if Mario is on the ground or 0
otherwise.

• Mario facing direction: Returns 1 if Mario is facing to the right or 0 if
Mario is facing to the left.

• Mario is carrying: This checks if Mario is carrying a shell or not

• Mario mode: It returns a number representing the mode of Mario:
small (0), big (0.5) or fire (1).

• Distance to obstacle: Works in a similar way as for checking the dis-
tance to a gap, giving a number according to the distance to an obstacle.

9



• Distance to power-up: It is calculated in the same way as the distance
to an obstacle and to a gap.

Thus, the environment representation is compound by a total of 65 ele-
ments, used as inputs for the Artificial Neural Network.

3. Controllers

Once the environmental representation was set up, six different methods
were used and compared in order to simulate human behaviour. The meth-
ods are based either on hand-coded rules, direct (as in supervised learning)
or indirect representation using a fitness value. Three of the methods used
were implemented specifically for this study. They are based on backpropa-
gation, neuroevolution and dynamic scripting. Those methods are used both
for instrumental similarity measure and the phenomenological evaluation by
human spectators. In the first subsection the evaluation fitness used for
neuroevolution and dynamic scripting is introduced.

Two other methods, which were used for the phenomenological evalua-
tion, are based on previous controllers created by participants of the Mario
AI Championship (REALM and Grammatically Evolved Behaviour Trees).
The last method (Forward Jumping agent) consists in a hand-coded rule-
based controller, included in the testbed game, which was used as baseline
for the specific human imitation experiments.

3.1. Evaluation fitness

This subsection presents the framework designed to evaluate the human-
likeness of a given agent. We generally let the agent play on several levels,
compare the traces of the agent’s trajectory through space with those left by
one or several human players and assign the agent an imitation fitness score.
This score can be used either to assess the human-likeness of an already
finished agent or as a fitness function when evolving human-like agents (such
as in the case of neuroevolution and dynamic scripting). A key innovation is
that the framework does not only create a single trace per agent and level,
but resets the agent’s position whenever it deviates too much from the human
trace in the same level, in order to achieve a more accurate and less biased
score. Agents can be evaluated against a specific player or against a set of
players.

10



Different approaches were considered in order to compare the performance
of a controller against the performance of a human player. The first approach
considered the positions the agent and the human player passed through a
level. Once these traces were calculated for both the human and the AI
player it was possible to visualize and compare them via an error value that
is based on the distance between the traces’ points. The error can be mea-
sured at different frame rates providing dissimilar error value approximations
with respect to time granularity. The problem with this approach are the
disproportionally high error values obtained when the Mario AI controller
gets stuck in a level because of a dead end, cannot overcome an obstacle or
dies early. This is a problem as the error continues increasing until the end
of the trace, skewing the error measure considerable towards errors early in
the trace.

Thus, a new approach was considered resetting the AI agent’s position to
the one that the human player had in the same frame, only if the distance
between the human player and the AI agent exceeds 200 pixels in that frame.
Therefore the fitness function (f) used for imitating specific human behaviour
is based on the number of times the controller had to reset its position to the
human player (R) plus the distance error (D) used as tuning value across all
levels (L) played (see eq. (1)).

The number of repositions is normalized between 0 and 10 and multiplied
by 100 while the average distance error is normalized between 0 and 50. By
giving a higher weight to the number of reposition it was intended to use
the distance error as tuning value. Having a number of reposition within 0
and 1000 plus a distance error between 0 and 50, resulted in a better fitness
differentiation than if the error distance were normalized within a higher
range as it would overlap the values obtained from the number of repositions
not being possible to use the distance error as tuning value.

f =
L∑
i=1

(R ∗ 100 + D)

L
(1)

3.2. Heuristic

The first controller architecture tested, is based on hand-coded rules that
feature no learning and hardly even takes the game environment into account:
the policy is to make Mario constantly run right and jump whenever possible.
This approach is very simple compared to the other methods, and included

11



for comparison purposes as it is one of the example controllers distributed
with the Mario AI benchmark, called Forward Jumping Agent (FJA).

3.3. Artificial neural networks

An artificial neural network (ANN) is a machine learning technique loosely
inspired by the principles and structure of biological neural networks. In
order to simulate human behaviour, two different methods have been im-
plemented using ANNs: Supervised learning and Neuroevolution. In both
approaches, the environment information (from the grid representation) from
each frame is used as input to the neural network and the keys outputs are
interpreted as keys pressed.

3.3.1. Supervised learning

The first ANN training method makes use of a direct representation by
using the game environment information obtained from human gameplay
as training set. Thus, an approach based on supervised learning [23] was
implemented as it can be used as a behaviour cloning method. This approach
uses backpropagation in an attempt to minimize the error between human
player actions and ANN outputs.

Gameplay data from a set of different human players (10 players playing
through 40 different levels), has been collected and used as training samples
for the ANN (more details are provided in section 4). The training set con-
tains the environment state for each frame using the representation presented
(inputs) and the actions the player carried out for that state based on the
keys pressed (outputs).

Once the information from the players was gathered, data preprocessing
was carried out by biasing the different state-action pairs so every action
appears the same number of times. This is done by sorting all the state-
action pairs according to the number of times the same action was performed.
After this, the number of times the most repeated action appears is obtained.
Thus, the rest of the actions are copying until they get the same number as
the most repeated action. By doing so, we make sure that all actions had
the same opportunity of being learned by the ANN.

The ANN topology used incorporates 65 inputs, 5 perceptrons in one
hidden layer and 5 outputs as it presented faster convergence compared to
other topologies used (refer to table 1). In order to train and validate the
ANN, 10-fold cross-validation was used. The ANN was trained during 2000
epochs (iterations) or until the error decreased to a value lower than 0.001

12



Figure 3: Error (grey line) decreases after ANN is being trained

per fold. The error was calculated as the mean squared error between the
actual and the desired output.

Topology Time (ms.)

65-5-5 735000
65-10-5 1094359
65-15-5 1537828
65-5-5-5 849719
65-10-5-5 1308234

Table 1: Time performance measurement with different ANN topologies. Time is measured
using each of the 40 training set corresponding to the 40 levels, during 2000 epochs. These
results were obtained in an Intel Core 2 Duo 1.83Ghz, 2Gb RAM

The ANN weights obtained after the training phase, were used as initial
weights of the Neuroevolution approach. Therefore the same topology was
used for that method, having a chromosome size smaller than if a bigger
topology were used (table 1). The maximum number of epochs was set to
2000 as the error presented a small variation after 1000 epochs (figure 3).
The learning rate was set to 0.3 as it gave the lowest error compared to other
values (figure 4).

13



Figure 4: Learning rate experiments showed that 0.3 gave the lowest error

3.3.2. Neuroevolution

The second approach for ANN training is based on an indirect represen-
tation where the weights of the ANN are adjusted by means of Evolutionary
Algorithms (EA). This neuro-evolutionary (NE) [24] approach attempts to
minimise a fitness value corresponding to the mean squared error distance
from the desired outputs (human actions). The fitness function used was the
one explained in detail in section 3.1. Both the inputs and the topology of
the NE controller are the same as the corresponding ANN used for supervised
learning.

Each chromosome (ANN) is evaluated on 40 levels. These levels present
an increasing difficulty based on the number of enemies, obstacles and gaps
width. The levels used do not present a long distance from the beginning to
the level goal: it is possible for a player to complete one level within 50 to 90
seconds of in-game time. Hills are easy to overcome and there are no mazes to
solve in order to get to a further point. The fitness is calculated as the average
of the fitness attained on those levels. The genetic algorithm used for evolving
the ANN weights contains a population of 10 chromosomes, uses roulette-
wheel selection, two-point crossover and Gaussian mutation with standard
deviation equal to 5.0 and probability of 0.3. The network is evolved for 2000
generations.

The mutation probability was set to 0.1 after experimenting with different

14



probabilities (refer to figure 5) and the population was set to 10 chromosomes
as using a bigger one (15 chromosomes) resulted in more than 25 hours of
training for NE and DS, while with 10 chromosomes got down to 23 hours.

Figure 5: Mutation probability shows that 0.1 gets the highest average fitness

3.4. Dynamic scripting

Dynamic Scripting (DS) is a reinforcement learning technique which re-
sembles learning classifier systems. It is described by Spronck et al. [25] as
“an online competitive machine-learning technique for game AI, that can be
characterised as stochastic optimisation”. DS contains a rule base (RB) with
the possible rules that can be applied into a game. Each rule has a weight
which reflects how well that rule made the agent perform in prior games.
In every game, a script is generated using roulette-wheel in order to select
a small subset of the rules in the RB. The agent will play according to the
rules contained in the script and those will have their weights updated via
a standard Widrow-Hoff delta rule which is based on the immediate reward
received by the environment.

The dynamic scripting method provides an interesting comparison to the
methods based on neural networks as it represents a very different policy
representation; unlike the neural networks, this representation is symbolic,

15



which makes it more prone to discrete transitions and makes it more human-
readable.

DS will update the weights of the rules not after one action is performed
but in the end of the game, adding a reward or a penalty proportional to how
well the agent performed in a level. This goodness value is provided by the
fitness function (F ) in order to calculate the weight adjustment after a game.
A reward (R) and a penalty (P ) constants are used (see eq. 2) [25]. Whether
penalty or reward is calculated in order to adjust the weights, is given by the
break-even point (b). Thus if (F ) is greater than (b) a proportional reward is
given otherwise the delta weight value is calculated using the penalty value.

∆W =


−bPmax

b− F

b
c if F < b

bRmax
F − b

1− b
c if F ≥ b

(2)

3.4.1. Modification to the DS algorithm

Originally Spronck et al. [25] developed DS to allow game AI to adapt
its difficulty level based on the player’s performance. In our case, the im-
plementation created differs in this principle as we want to obtain the most
human-like Mario AI controller, meaning the one that best imitates a specific
human player. Once the algorithm is executed and after a maximum of 2000
iterations (forty levels are played in each iteration), the agent will store the
best script generated, i.e. the one that obtained the best reward value during
those iterations. This algorithm modification implies that, in our case, there
is no adaptability in the final script as the rules that are contained in it are
the ones that are always going to be used by a player. Another aspect that
differs from the standard DS implementation is the way the RB is created.

In DS, the RB contains the rules introduced by hand by the game de-
signer. In our approach the rules are generated by creating all the possible
combinations of conditions and actions. Therefore one rule can contain a
combination of one to three conditions and one action. The amount of con-
ditions that can be selected are six and the number of actions are five. By
assigning a number to the conditions from one to six and a number to the
actions from one to five, it is possible to generate all the possible permuta-
tions (up to three conditions and one action) without symmetry from those
numbers, adding the resultant rules to the RB.

16



3.4.2. Rules

Rules in the dynamic scripting implementation are structured as sets of
conditions and actions with a restricted maximum number of conditions and
actions per rule. The maximum number of conditions and actions per rule
were set to three and one, respectively. The six possible conditions are defined
using the environment variables provided by the Mario AI Benchmark:

• Mario able to jump

• Mario on the ground

• Obstacle in front

• Gap in front

• Mario able to shoot

• Enemies in front

Rule actions are based on high-level actions, meaning any action that is
compound by the combination of different keys repeated during a predefined
number of frames. These high-level actions are:

• Walk: The right key is pressed. This action is carried out during one
frame.

• Run: The right key and the speed key are pressed. This action is
carried out during one frame.

• Right Small Jump: Jump and right keys are pressed during two
frames.

• Right High Jump: Jump and right keys are pressed during ten frames

• Avoid enemy: According to where the enemy is, compared to Mario’s
facing direction, the action will return the opposite enemies direction
key (Left or Right) and jump. This is done during three frames.

Examples of rules can be seen in Table 2.

17



Conditions Action

Gap in front? Mario able to jump? Right High Jump
Enemies in front? Mario on the ground? Mario able to jump? Run

Table 2: Two examples of rules in the DS rule base.

3.4.3. Dynamic scripting parameters

Regarding the parameters used in the implementation of the algorithm,
the maximum and minimum weight threshold are set to 2000 and 0, respec-
tively. The script size was set to 10 rules as those proved to be sufficient to
cover a large diversity of agent behaviours without slowing down the perfor-
mance during the agent’s training phase. For the break-even point the value
selected was 0.3 as it provided a fast distinction between those rules that
returned a high reward and those that gave a low reward value. The reward
and penalty values are 700 and 250 respectively, because as the RB contains
many different rules (315 after getting rid of the symmetric ones) giving a
much a higher value to the reward, speeds up the process of differentiating
between the rules that better adapt to a specific player and those that do
not. Related to the break-even point and the reward and penalty values, the
formula used for adjusting the rules weights is the same as the one proposed
by Spronck et al. [25] (eq. 2).

3.5. REALM

REALM is the name of the agent architecture created by Slawomir Bo-
jarski and Clare Bates Congdon for the Mario AI Championship in 2010. This
algorithm, which is a “rule-based evolutionary computation agent”, won the
final phase of the Mario AI Championship (gameplay track) in 2010 [26]. It
also won the Turing Test track, a human-likeness competition among Mario
agents [2].

REALM follows the principles of learning classifier systems, by which
rules are evolved according to a fitness value [27]. Each rule contains con-
ditions based on different information obtained from game including Mario
size, enemies’ positions, presence of power-ups and presence of blocks in the
level. The head of a REALM classifier includes high-level plans of actions
instead of simple reactive combinations of keys presses. The possible actions
are as follows: Progress, Attack, Evade and Powerup.

Compared to DS, REALM differs in several respects: 1) the rule base
in REALM is evolved via playing 12 levels and using a fitness value based

18



on the distance travelled, number of wins and deaths, Mario mode and time
left [26]; 2) each chromosome contains a single rule set of 20 rules and the size
of the population is fixed to 50; 3) each rule contains seven conditions which
may take the values true (1), false (0) or irrelevant (#); and 4) Whereas DS
selects low-level control outputs corresponding to key presses, REALM uses
high-level actions combined with the A* pathfinding algorithm which allow
the controller to perform well in difficult levels containing several obstacles,
gaps and enemies.

3.6. Grammatically evolved behaviour trees

The last Mario controller used is based on Grammatical Evolution of Be-
haviour Trees (GEBT). This controller, which participated in the gameplay
track of the 2010 Mario AI Championship, was created by Diego Perez and
Miguel Nicolau [28]. Behaviour trees, which have recently become popular in
commercial game AI, provide a top down organisation from the root of the
tree down to the leaves [29]. The control nodes are those that decide which
branches of the tree will be executed next, while the leaf nodes contain the
actions that are going to be carried out. The different elements of the tree
are specified in a grammar which is evolved by applying genetic operators to
the sub-trees created. While the evolutionary mechanism is similar to that
used in neuroevolution, the behaviour tree representation differs significantly
from both neural networks and dynamic scripting.

4. Data gathering

The machine learning approaches examined in this paper (neuroevolution,
backpropagation and dynamic scripting) require recorded data from play ses-
sions in order to be able to imitate human gameplay. Human gameplay data
is also required for testing the humanness of each controller by comparing it
against human play. For these purposes, data was gathered from different
human players with a wide range of experience playing games in general and
Super Mario Bros in particular. Note that the differing expertise levels and
playing styles of players make it possible to play the same level in different
ways; therefore, the performance of imitation learning is expected to differ
from one player to another. Data was collected from ten players who played
through 40 different levels. The players played the game locally in a java
applet, while the gameplay data was logged to a file. The data gathered

19



contains the game state and the corresponding action taken for that state as
well as the Mario traces in each level.

It could be argued that ten players is a very small sample. However, each
player played 40 games, so that each imitation-based controller was trained
on 400 games. (Playing 40 games takes time, so recording data from ten
players required nontrivial effort.) Additionally, the number of players used
to collect data is less interesting as this simply represents what the controller
is trained on; it would in our opinion have been methodologically correct
to train on data from a single player if we wanted to imitate that player’s
behaviour, as long as an appropriate number of different people judged the
player-likeness of the controllers derived from that player’s behaviour. The
more interesting number is that 67 spectators judged the human-likeness of
the agents – see section 6 for more on this.

Prior to the play session the players were asked to rate — on a scale
between 1 (low) and 5 (high) — their experience with playing games in
general and their experience with playing Super Mario Bros. The average
self-rated experience with games in general was 3.3 (min=1, max=5) and
with Super Mario Bros 2.7 (min=1, max =4).

5. Experiments

In this section, we describe the results of the training the controllers and
evaluating their performance in playing the game, and their human-likeness
as judged by similarity behaviour similarity to the human gameplay traces
used to train them.

5.1. Performance score

The first experiment presented compares the three controllers imple-
mented (Backpropagation, NE and DS) in terms of the average score ob-
tained through the 40 levels (L) (see eq. 3). The score (S) is given by the
Mario AI benchmark [4, 17] which is used in the Mario AI competition, as a
weighted sum taking into account different factors: the distance travelled in
grid blocks (DT), number of flowers devoured (FD), if Mario has won (W),
Mario mode (M), mushrooms devoured (MD), green mushrooms devoured
(GMD), coins collected (CC), hidden blocks found (HB), number of kills
(K), number of enemies killed by stomp (KS), number of enemies killed with
a shell (KWS), number of enemies killed with fire balls (KWF) and the time
left (TL).

20



S =
L∑
i=1

(DT ∗ 1 + FD ∗ 64 + W ∗ 1024 + M ∗ 32 + MD ∗ 58 + GMD ∗ 58

L

+CC ∗ 16 + HB ∗ 24 + K ∗ 42 + KS ∗ 12 + KWS ∗ 17 + KWF ∗ 4 + TL ∗ 8)

L
(3)

The controllers are trained independently on the data of each of the 10
human players; Table 3 shows the results obtained for each controller and
human player.

Player No. Player’s Score BP NE DS

1 2526.5 217 267.0 261.9
2 2933.3 451 247.2 1996.3
3 3471.9 136 1505.0 1328.7
4 2853.1 711 1475.0 1713.1
5 3518.9 147 235.0 1253.7
6 2674.0 214 1084.0 736.9
7 3752.2 1069 1266.0 1710.7
8 3375.9 180 235.0 253.1
9 2048.6 222 1136.9 1145.4
10 1974.1 173 842.2 733.3

Average 2912.8 352 829.3 1113.3

Table 3: Average score across all 40 levels played obtained for the three different ap-
proaches (BP, NE and DS) trained to imitate a specific player. For comparison purposes
the table includes each human player’s average score across the 40 levels played. T-Test
results show that human player’s score is significantly higher, while NE and DS scores are
higher than BP. T-test calculation details are explained below.

The results obtained in 3, showed that NE and DS have higher score
compared to BP, but they are still way lower than Human. NE gets a score
higher than 1000 for players 3, 4, 6 , 7 and 9 while DS gets a score over 1000
for players 2, 3, 4, 5, 7 and 9. Thus, both algorithms present high scores for
players 3, 4, 7 and 9. According to the players game experience classification
(table ??), player 3 and 7 have more experience than 4 and 9, while 4 has
more experience than 9. This shows that there is not a clear relationship
between the score obtained by the controllers and how good the imitation of

21



a player is. BP gets the lower score as it gets stuck and dies more often than
NE or DS.

To test the significance of the score obtained between the different ap-
proaches and the human players we apply a t-test (significance is 0.05 in this
paper). The results of the t-Test, show that human players have a signifi-
cantly higher score compared to the other methods (BP: T = 11.72 , p-value
< 0.0001; NE: T = 8.05, p-value < 0.0001; DS: T = 6.57, p-value < 0.0001)
while NE and DS scores, are significantly higher compared to BP (T = -2.44,
p-value = 0.02526 and T = -3.54, p-value = 0.0035, respectively). NE com-
pared to DS, on the other hand, does not show significantly different results
(T = -1.11, p-value = 0.281608).

5.2. Imitation fitness

The experiment presented in this subsection focuses on comparing the
average fitness obtained through the 40 levels for the controllers implemented.
The three baseline controllers that make use of general fixed rules (REALM,
GEBT, FJA) are compared against the three controllers implemented (BP,
NE and DS). Table 4 presents the results obtained for each controller which
demonstrate that the designed fitness function was successful for generating
agents that imitate human game players.

Player No. BP NE DS FJA REALM GEBT

1 450 641 638 161 305 391
2 421 624 682 121 266 318
3 352 587 641 355 529 540
4 643 774 750 427 650 688
5 346 576 578 301 453 416
6 598 678 688 204 351 434
7 531 608 614 548 633 605
8 406 547 589 140 294 342
9 741 864 905 450 655 762
10 698 886 867 411 578 722

Average 518.6 678.5 695.2 311.2 471.4 521.8

Table 4: Average imitation fitness obtained by every agent imitating each player, through
the forty levels. The results obtained from the t-Test show that NE and DS fitnesses
are significantly higher than the others while BP fitness is significantly higher than FJA.
GEBT and REALM have a significantly higher fitness than FJA. T-Test calculation details
are explained below.

22



A key observation from the results obtained is that differences in fitness
values across players does not correlate perfectly with the quality of imitation.
Instead, those differences could be due to the fact that some players (such as
Player No. 9 and 10) died early in the level which results to a low number of
repositions and therefore to a high fitness. It is, however, possible to compare
the fitness value obtained for each controller imitating the same player.

Figure 6 shows that the NE and DS mechanisms yield controllers of the
highest fitness values compared to the other four mechanisms demonstrating
that the fitness function chosen is successful in generating Mario agents that
imitate human players well. Moreover, the BP mechanism — which is the
controller that yields the worst fitness among the three machine learning
mechanisms — on average achieves higher fitness than REALM and FJA
while performing similarly to GEBT.

In order to test the significance of the fitness obtained between the dif-
ferent approaches used we apply a t-test (significance is 0.05 in this paper).
The results of the t-Test show, that compared to the other methods, NE
(BP: T = -2.68, p-value =0.015; DS: T = -0.32, p-value = 0.753; FJA: T =
6.03, p-value < 0.0001; REALM: T = 3.3, p-value = 0.0004; GEBT: T =
2.43, p-value = 0.026) and DS (BP: T = -3.05, p-value = 0.0073; FJA: T
= 6.48, p-value < 0.0001; REALM: T = 3.66, p-value = 0.002; GEBT: T
= 2.75, p-value = 0.014) obtained a significantly higher fitness compared to
the other methods but not compared to each other. BP (FJA: T = 3.15, p-
value = 0.005; REALM: T = 0.7, p-value = 0.49; GEBT: T = -0.05, p-value
= 0.96) presented significantly higher fitness compared to FJA but is not
significantly different from REALM and GEBT. REALM (FJA: T = -2.33,
p-value = 0.031; GEBT: T = -0.7, p-value = 0.49) and GEBT (FJA: T =
-2.99, p-value = 0.007) got significantly higher fitness values compared to
FJA but they are not significantly different compared to each other.

5.3. Traces comparison

Another way of testing the efficiency of the controllers obtained and as-
sessing their capability of imitating different human players focuses on the
comparison of the different traces left by both the controller and the player
on the same level. For space consideration only a small subject of example
traces are illustrated in Figure 7; in that figure we illustrate the traces of
two players on a particular level as well as the traces of the NE and DS
mechanisms that attempt to imitate them.

23



Figure 6: Fitness comparison between the three machine learning mechanisms examined
(BP, NE and DS) and three baseline controllers (REALM, FJA and GEBT). The bars
appearing in the graph are the average fitness values across all 10 players.

It can be appreciated that NE and DS adapt to both players rather than
using the same actions in both cases. Player 6 dies early in the level and
so does the controllers imitating him (figures 7(c) and 7(d)), while Player 3
gets to complete the level and so does both NE and DS controllers showing
pretty similar traces (figures 7(a) and 7(b)). Player 3 DS and NE traces are
quite similar, although DS presents more jumps in some concrete areas. For
Player 6 using DS, jumps are higher compared to the traces obtained for NE
and in the end of the trace we can see that the agent is jumping around the
same area (figure 7(c)). By replaying DS in that level, it was observed that
when gap was in front of Mario, DS jumped and went back instead of trying
to overcome it. This makes sense as Player 6 hesitates and dies often when
a gap is in front, compared to Player 3. It appeared that results imitating
specific humans are worst when those present a lot of hesitation. This factor
is related to the experience the player has in playing games (table ??). Player
10 is a clear example of player who hesitates a lot, hence dying in early stages
in the level. This produces as outcome a non human-like behaviour as it is
difficult to adjust the controller to the traces left by that player (figures 7(f)

24



and fig:P10NE:e).

(a) Player No. 3 - DS mechanism (b) Player No. 3 - NE mechanism

(c) Player No. 6 - DS mechanism (d) Player No. 6 - NE mechanism

(e) Player No. 10 - DS mechanism (f) Player No. 10 - NE mechanism

Figure 7: Gameplay traces from three human players (Player No. 3, 6 and 10) and traces
generated by the NE and DS mechanisms in their attempt to imitate those players.

6. Phenomenological evaluation of controllers

To assess the believability of the different controllers implemented we used
an online survey, where participants annotated the believability of various

25



Mario AI (and human) agents, thereby implementing a 3rd person assess-
ment, crowd-sourced version of the Turing test [6].

The Turing Test aims for the evaluation of human-like behaviour in com-
puters by trying to deceive a human interrogator. If we extrapolate this idea
into the believability assessment of the obtained controllers, it is possible to
design a survey where the user (interrogator) can guess if the player visual-
ized is indeed an AI agent or a human. Therefore it is possible to rank the
believability of the different controllers and also obtain the number of times
one controller was chosen when compared against the others. Six pairs of
videos — showing different Mario agents playing the game — are displayed
to the user; after watching each video pair the user is asked to choose which
of the two agents was the human player using a 2-alternative forced choice
questionnaire. The sequence of questions and the agents compared are gen-
erated randomly every time a user enters the survey; moreover, the same
controller is not compared against itself and each controller appears twice in
each of the six pairs presented. The results of this crowd-sourcing experi-
ment3 involving 67 completed surveys (total number of pairs watched is 67*6
= 402 pairs) are shown in Table 5.

The table shows the total number of points (Total column) that each
of the controllers obtained and how many times each controller got selected
compared to the other controllers (Human, BP, NE, DS, REALM and GEBT
columns) whenever they appeared together in the same question. It can be
seen that the human player was the one that was selected most often, followed
in descending order by NE, DS, REALM, GEBT and BP. BP gets the worst
result compared to the other controllers as it resembles the least human of
all.

The Mann-Whitney U Test (p equals 0.05) is applied to the crowd-sourcing
results of Table 5, in order to get the significance between each pair of con-
trollers. In order to apply this test, the ranks are calculated as zeros and
ones, i.e when comparing NE with BP, NE was selected 21 times and BP one,
then NE gets 21 ones and one zero value, and the same applies for the rest of
controllers compared to NE. The results of applying this test are presented
in Table 6.

As expected, the human player is significantly different from all AI con-
trollers. In the comparison among AI agents BP and NE are, respectively,

3Believability Survey website: www.juop.es.

26



Agents Human BP NE DS REALM GEBT Total

Human − 21 20 24 26 19 110
BP 1 − 1 6 7 6 21
NE 9 20 − 14 19 27 89
DS 8 24 6 − 12 24 74

REALM 4 24 12 9 − 14 63
GEBT 2 25 6 6 6 − 45

Table 5: Total number of “humanness” assessments obtained from the crowd-sourcing
experiment. Results obtained from the Mann-Whitney U Test show that the human
player is significantly different from the rest while BP and NE are the least and most
human-like agents respectively. Mann-Whitney U Test calculation details are discussed in
section 6.

Agents Human BP NE DS REALM GEBT

Human − -9.39 -2.21 4.75 3.8 6.44
BP − − -6.97 -5.39 -4.43 -2.74
NE − − − 1.58 2.53 4.22
DS − − − − 0.95 2.64

REALM − − − − − 1.69

Table 6: The statistical values obtained from applying the Mann-Whitney U Test on each
pair of controllers. The statistically significant differences (p−value < 0.01) are presented
in bold.

the least and most human-like AI agents compared to the other AI con-
trollers; however, there is not a significant difference between NE and DS.
The humanness of DS is ranked significantly higher than the humanness of
BP and GEBT while REALM and GEBT are only more human-like than BP;
however, compared to each other they do not present a significant difference.
From these results we can conclude that the NE agent is the most human-
like Mario controller, getting higher humanness scores when compared to
the REALM agent which has been ranked as the most human-like agent
in another 3rd person believability experiment existent in the literature [2]
that involved 100 participants at the Turing Test track of the 2010 Mario AI
Championship.

In addition to the forced choice question users had the possibility of send-
ing their additional comments about their judgement in a free text box at the
end of the experiment. The main conclusions derived from those comments
are as follows:

27



• It is difficult to decide who is the human without having a human player
reference; for instance, a controller that moves towards a wall could be
a 3 year old child playing Super Mario Bros.

• The human player was classified correctly mainly due to: 1) pausing
the gameplay after risky manoeuvres; 2) trying to go to the right when
the player run over a cliff; 3) hesitating at dangerous places; and 4)
making little errors due to miss-pressed buttons (e.g. ducking for half
second).

7. Discussion

There were a number of encouraging outcomes of the present study. In
particular, all of the agents that were trained to imitate human players,
achieved higher imitation scores than those that were simply created in order
to gain a high score in the game. Those two agents that implemented indirect
imitation (neuroevolution and dynamic scripting) also managed to convince
human observers of their human-likeness significantly more often than the
other agents. (The backpropagation-trained agent, which was the only one
implementing direct imitation, attained dismal human-likeness scores in the
phenomenological evaluation.) These results largely confirm the trends ob-
served in [9] and [14], though in a different domain (and with more method-
ological rigour).

The two indirect imitation methods also outperformed the direct imi-
tation method in terms of raw score, with neuroevolution almost always
outperforming backpropagation, and dynamic scripting outperforming back-
propagation by a large margin. However, all the trained controllers performed
much worse than the players whose data they had been trained on. It seems
that our use of indirect imitation has not completely solved the problem with
performance drop between original human and imitation that is so apparent
when using direct imitation. As the two more sophisticated non-imitating
controllers (REALM and GEBT) are capable of clearing almost all levels of
the difficulty used in these experiments, we can truthfully say that with cur-
rent techniques, there is a tradeoff between performance and human-likeness.
This is a serious problem for most of the envisioned uses of behaviour imita-
tion listed in the introduction, and we would argue that this problem deserves
further study. One possible angle of attack could be to combine the multiob-
jective approach from [14] with the more sophisticated evaluation framework
used in this study.

28



We have not investigated to what extent a model trained on player X
replicates the playing style of player Y, or indeed the average playing style of
a population of players. These would be interesting investigations to which
the current methodology would be well suited, but which we will have to
defer until a future paper.

A key question is to what extent the methods and finding from this study
apply to other domains than platform games, in particular to other genres
of video games. We have discussed the general problem of behaviour imi-
tation in games elsewhere, where we have also tried to delimit this problem
against those aspects of believability which are more the domain of computer
graphics [2]. In the following discussion, we will confine ourselves to the dif-
ficulty of imitating player behaviour in Super Mario Bros as compared to
other games, for example racing games, where behaviour imitation has been
studied previously (see the introduction).

The number of separate action outputs (5 buttons, yielding 32 possible
actions each time step) is larger than in most racing games, and it can be
argued that the navigation problem is more complex for platform games than
in racing games as they occasionally require the player stop and wait (e.g.
for a flower to recede into its pipe) or even move backwards (e.g. to collect
a coin). There is also a larger number of qualitatively different actions that
need to be taken by the player in a platform game (run, shoot, jump etc.) as
compared to a racing game. On the other hand, the action space is discrete,
which might be argued makes it easier to imitate actions. Previous attempts
to evolve well-performing controllers for Super Mario Bros indicate that it is
a slightly harder task than evolving controllers for racing games, suggesting
that something similar goes for imitating human playing behaviour [30, 31].

Compared to some other games, Super Mario Bros could be said to be
significantly simpler to imitate human playing behaviour in. Unreal Tourna-
ment 2004, which is the game used for the annual 2k BotPrize (a competition
for human-like bots) is a first-person shooter game which features continues
state and action space, movement in three dimensions, and multiple bots
moving on the same map simultaneously. The complexity of movement in
three dimensions together with the continuous action space implies that any
function approximator would need to differentiate among a large number
of meaningfully different actions, posing challenges from learning behaviour
from a limited-size training set. In order to successfully use the methods
presented here for such a game, one would probably need to define relevant
and quite complex macro actions in order to limit the action space. Such ac-

29



tions could themselves perhaps be extracted from human playing data using
clustering or frequent sequence mining.

There is a significant number of instances in the training data with the
same observation but different actions, especially in situations where the
player was standing still while hesitating. In other words, we have a signif-
icant incidence of perceptual aliasing. This is in principle a problem for all
reactive controllers (all of the trainable controllers in this study were reac-
tive), and might necessitate a move to stateful controllers such as recurrent
neural neural nets, or evolutionary behaviour trees, in order to achieve higher
imitation performance.

The crowd-sourcing method used for gathering the ground truth about
the human-likeness of our controllers worked well for the current experiment,
but for future experiments comparing a larger number of controllers and
players of different skill levels, we will need to find new methods of gathering
the opinions of a larger and perhaps more representative set of spectators.

8. Conclusion

We have presented a method for assessing the behavioural similarity of
different agents playing a platform game to humans (or to other agents).
Using this method, we have evaluated the similarity of a number of agents,
some of which were trained on human gameplay data and some which were
simple or sophisticated attempts at developing well-performing agents, to
recorded data of ten human players. We found significant differences among
the agents, with those agents that were trained on human data coming out
as most human-like. None of the agents were judged to be as human-like as
the human. Among the trained agents, those trained with indirect imitation
performed much better than the agent trained with direct imitation, but did
not perform as well on the game itself than those agents optimised only for
playing well. These results might or might not generalise to other domains
and other controller architectures. Returning to the research questions posed
in section 1.2, we can answer them as follows:

1. Can we create controllers that appear to be as human-like as actual
humans to external observers? Not yet. The methods proposed here
appear promising, but there are apparently still aspects of the displayed
behaviour that give the bots away as non-human, even for this relatively
simple game.

30



2. Are controllers trained to imitate humans perceived as more human-
like than controllers simply trained to play the game well? Yes, if the
controller performs well enough. The controller trained with neuroevo-
lution was judged the most humanlike of all controllers, whereas the
controller trained with backpropagation was judged the least human-
like, even though it was trained to imitate the same humans. The
likely explanation is that the insufficient performance gave the con-
troller away by making errors that a human would be very unlikely
make, such as running in place against a wall.

3. When imitating human behaviour, which controller architecture and
training method (direct or indirect) gives the best results? Indirect
methods. The decisive victory of the neuroevolution-based and dy-
namic scripting-based controllers over all other controllers show that
for the problem and method range considered, indirect methods solve
the problem best.

8.1. Future work

We believe these results are promising and might contribute to the de-
velopment of more human-like agents, for the purposes of more immersive
gameplay, personalised game demonstration, and automatic content evalua-
tion. Some recent work in automatically generating levels for Super Mario
Bros already use artificial agents to automatically test the playability of gen-
erated levels [32, 33] and having more human-like controllers at their disposal
could improve the quality of these content generator.

The most important line of future work would be to create more reliable
and higher performing indirect imitation methods, preferably methods that
use less data, so that models of the playing style of a particular player can
be quickly learned. One way of improving indirect imitation would to be
complement the trace-based human-likeness evaluation method used in this
paper with other measures of human-likeness. For example, other metrics
could be identified by identifying the main parameters of variation between
numerous examples of human- and non-human gameplay using unsupervised
learning methods such as deep networks of frequent subsequence mining;
these parameters could then form the basis of new features used to model the
particular playing style that should be imitated. Another way of achieving
better indirect imitation could be to provide a library of common primitive
or “molecular” in-game behaviours (stomping an enemy, collecting all coins

31



from a question mark block) and use these to compose “ensemble controllers”
that match the observed playing style.

Ultimately, these techniques need to be verified on games that have higher
dimensions of control and/or a larger number of common in-game atomic
game mechanics. Where Super Mario Bros five binary dimensions of control
yielding 32 possible atomic actions, a first-person shooter played with the
XBox controller has six to eight binary dimensions of control (buttons), and
four continuous dimensions (two control sticks). This yields a literally infi-
nite number of possible atomic actions, but there are reasons to believe the
number of frequently occurring actions is much lower. Unsupervised learn-
ing techniques could be very useful in analysing which actions to build into
a repertoire of output classes for a controller based on indirect imitation.

References

[1] P. Hingston, A new design for a turing test for bots, in: Proceedings of
the IEEE Conference on Computational Intelligence and Games (CIG),
2010.

[2] J. Togelius, G. N. Yannakakis, N. Shaker, S. Karakovskiy, Assessing
believability, in: P. Hingston (Ed.), Believable Bots, 2012.

[3] M. Newborn, Kasparov Vs. Deep Blue: Computer Chess Comes of Age,
Springer, 1997.

[4] J. Togelius, S. Karakovskiy, R. Baumgarten, The 2009 mario ai compe-
tition, in: Proceedings of the IEEE Congress on Evolutionary Compu-
tation, 2010.

[5] P. Hingston, A turing test for computer game bots, IEEE Trans. Com-
put. Intellig. and AI in Games 1 (3) (2009) 169–186.

[6] A. Turing, Computing machinery and intelligence, Mind 59 (1950) 433–
460.

[7] S. Legg, M. Hutter, Universal Intelligence : A Definition of Machine
Intelligence, Minds and Machines 17 (4) (2007) 391–444.

[8] T. Schaul, J. Togelius, J. Schmidhuber, Measuring intelligence through
games (2011).

32



[9] J. Togelius, R. De Nardi, S. M. Lucas, Towards automatic personalised
content creation in racing games, in: Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games (CIG), 2007.

[10] B. Chaperot, C. Fyfe, Improving artificial intelligence in a motocross
game, in: IEEE Symposium on Computational Intelligence and Games,
2006.

[11] J. Matthews, Interview with jeff hannan,
http://www.generation5.org/content/2001/hannan.asp (2001).

[12] M. Buckland, Interview with jeff hannan (Publication date unknown).
URL http://www.ai-junkie.com/misc/hannan/hannan.html

[13] R. Herbrich, (personal communication) (2006).

[14] N. van Hoorn, J. Togelius, D. Wierstra, J. Schmidhuber, Robust
player imitation using multiobjective imitation, in: Proceedings of the
Congress on Evolutionary Computation, 2009.

[15] C. Thurau, C. Bauckhage, G. Sagerer, Learning human-like Movement
Behavior for Computer Games, in: S. Schaal, A. Ijspeert, A. Billard,
S. Vijayakumar, J. Hallam, J.-A. Meyer (Eds.), From Animals to Ani-
mats 8: Proceedings of the 8th International Conference on Simulation
of Adaptive Behavior (SAB-04), The MIT Press, Santa Monica, LA,
CA, 2004, pp. 315–323.

[16] B. Gorman, C. Thurau, C. Bauckhage, M. Humphrys, Believability test-
ing and bayesian imitation in interactive computer games, in: Proceed-
ings of the Conference on Simulation of Adaptive Behavior (SAB), 2006.

[17] S. Karakovskiy, J. Togelius, The mario ai benchmark and competitions,
in: IEEE Transactions on Computational Intelligence and AI in Games,
Vol. 4, 2012, pp. 55 – 67.

[18] N. Shaker, G. N. Yannakakis, J. Togelius, Towards Automatic Person-
alized Content Generation for Platform Games, in: Proceedings of Ar-
tificial Intelligence and Interactive Digital Entertainment (AIIDE’10),
AAAI Press, Palo Alto, CA, 2010, pp. 63–68.

33



[19] C. Pedersen, J. Togelius, G. N. Yannakakis, Modeling Player Experience
for Content Creation, IEEE Transactions on Computational Intelligence
and AI in Games 2 (1) (2010) 54–67.

[20] P. A. Mawhorter, M. Mateas, Procedural level generation using
occupancy-regulated extension, in: Proceedings of the IEEE Conference
on Computational Intelligence and Games (CIG), 2010, pp. 351–358.

[21] N. Sorenson, P. Pasquier, Towards a generic framework for automated
video game level creation, in: Proceedings of the European Conference
on Applications of Evolutionary Computation (EvoApplications), Vol.
6024, Springer LNCS, 2010, pp. 130–139.

[22] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, R. Baumgarten, The 2010 Mario AI championship: Level
generation track, IEEE Transactions on Computational Intelligence and
Games.

[23] A. Champandard, The dark art of neural networks, AI Game Program-
ming Wisdom (2002) 640–651.

[24] D. Floreano, P. Drr, C. Mattiuss, Neuroevolution: from architectures to
learning, Evolutionary Intelligence In Evolutionary Intelligence 1 (2008)
47–62.

[25] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, E. Postma, Adaptive
game ai with dynamic scripting, Machine Learning 63 (2006) 217–248.

[26] S. Bojarski, C. Congdon, Realm: A rule-based evolutionary computation
agent that learns to play mario, in: Computational Intelligence and
Games (CIG), 2010 IEEE Symposium, 2010, pp. 83–90.

[27] L. Bull, Learning classifier systems: A brief introduction, in: In Bull, L
(Ed.): Applications of Learning Classifier Systems. Berlin u.a, Springer,
2004, p. 14.

[28] D. Perez, M. Nicolau, M. O’Neill, A. Brabazon, Evolving behavior trees
for the mario ai competition using grammatical evolution, in: Applica-
tions of Evolutionary Computing, Springer, 2011, pp. 121–130.

34



[29] A. Champandard, Understanding behavior trees, AiGameDev.com.

[30] J. Togelius, S. Karakovskiy, J. Koutńık, J. Schmidhuber, Super mario
evolution, in: Proceedings of the 5th international conference on Com-
putational Intelligence and Games, CIG’09, IEEE Press, Piscataway,
NJ, USA, 2009, pp. 156–161.
URL http://dl.acm.org/citation.cfm?id=1719293.1719326

[31] J. Togelius, S. M. Lucas, Evolving controllers for simulated car racing,
in: Proceedings of the Congress on Evolutionary Computation, 2005.

[32] N. a. Shaker, in: Proceedings of Artificial Intelligence and Interactive
Digital Entertainment (AIIDE), 2012.

[33] M. Kerssemakers, J. Tuxen, J. Togelius, G. Yannakakis, A procedural
procedural level generator generator, in: Proceedings of the IEEE Con-
ference on Computational Intelligence and Games (CIG), 2012.

35


